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Abstract. The generalised Langevin equation of motion for dynamic variables is used in 
order to derive general expressions for electronic transport coefficients in the vicinity of a 
critical point. All kinetic coefficients are treated on an equal footing, in the absence of an 
applied magnetic field. The derivation is model independent, although cubic symmetry is 
assumed. Such expressions are related to the more usual Boltzmann expressions by 
introducing a matrix of relaxation times. The Seebeck coefficient or thermoelectric power 
is given some special emphasis because it cannot be defined in terms of a single relaxation 
time. The Mott formula is however recovered in terms of a general kernel a(E). 

1. Introduction 

In order to take into account coupling between fluctuations of various fluxes near a 
critical point, it is usual to start from the generalised Langevin equation of Brownian 
motion (Mori 1965) which is in fact an identity, when the fluctuation dissipation 
theorem is used to define the memory function @(t)  in terms of the appropriate 
correlation function. Such an approach dates back to the landmark paper of Zwanzig 
(1965) on the response function, and to the application of the response function 
theory of dielectric relaxation by Cole (1965). Such pioneering works induced by the 
intriguing singularities of transport coefficients in liquids still retain their powerful 
impact when applied to solid state physics. 

Kawasaki (1970) has developed an elegant formalism based on such an identity in 
order to construct a kinetic equation to describe the slowed-down motion of the 
system near a critical point. He has illustrated the theory by working out the 
behaviour of singular transport coefficients of, for example, magnetic insulators, near 
the critical point T,. 

Electronic transport coefficients are not singular near a critical point. The theory 
thus has to be adapted in order to describe the effect of criticality on such coefficients, 
hence to describe the behaviour of their temperature derivative which is indeed 
singular. 

The Mori-Kawasaki kinetic equation leads to a concise form for any transport 
coefficients. In the case treated here, the approach leads to a generalisation of the 
Green-Kubo formula for the electrical resistivity (Green 1956, Kubo 1966) and the 
+Work performed in the framework of the joint project ESIS of the University of Antwerp and the 
University of Liege. 
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other electronic coefficients. Such formulae will be given in 0 2 .  They do not seem to 
have been presented before as globally as here. Such formulae have to be rewritten in 
a more appropriate form in order to take into account explicitly the occurrence of 
various characteristic time and length scales near the critical point. The Mori identity 
has to be used again to derive such a new form. However the final expressions do not 
appear as simple as the familiar ones based on the Boltzmann equation. 

Mori’s intention has been to present a kinetic equation including the description of 
dynamic variables’ fluctuations. In so doing, some connection between the Boltzmann 
regime (the characteristic length being of the order of the mean free path) and the 
classical hydrodynamic regime (the characteristic length is macroscopic, like the 
sample dimension) is supposed to be made near a critical point. It has never been 
shown that such a connection indeed exists for the electronic transport Coefficients. It 
is appropriate to show it in our new general expressions. 

Similarly, the connection between the Boltzmann equation approach and the mean 
field reduction of Mori-Kawasaki-like formulae for electronic transport coefficients 
is far from obvious (Edwards 1958). Indeed Thouless (1976) has recently been 
intrigued by such a relation. He has been able to derive the standard Boltzmann 
expression for the electrical conductivity starting from the Green-Kubo formula in the 
case of a disordered system, when the electron mean free path is large. 

Our calculation shows the same connection, although we will be more general 
since we start from general (and cumbersome) expressions for the electronic transport 
coefficients, expressed in terms of correlation functions between (time derivatives of) 
various current operators. We will not only describe the connection in the case of the 
electrical resistivity, but also for the other transport coefficients of interest, i.e. the 
thermal conductivity and the Seebeck (and hence for the Peltier) coefficient. The 
latter does not have a simple Boltzmann expression except that given by Mott (1936). 
However, the latter is known to have some drawbacks in particular in the vicinity of a 
critical point. 

It is therefore of interest to be more explicit than usual concerning such a ther- 
moelectric coefficient. Its hybrid nature will be emphasised. We will however leave a 
detailed study of the Seebeck coefficient (in magnetic metals near T,) until the 
generalisation (or interpretation) of the Mott formula near a critical point. 

The equivalence of the generalised Langevin equation and the generalised master 
equation of Nakajima (1958) and Zwanzig (1960) has been proved recently by 
Grabert (197i). Our work therefore contributes further to understanding the connec- 
tion between various approaches to the description of dynamic critical phenomena 
(see also Enz 1976). Notice that our work, like that quoted here, is restricted to 
‘linearised’ equations. In order to go beyond such a restriction, it might be interesting 
to follow the pioneering work of Ueyama (1975) on the same subject. 

Finally, let us point out that the Green-Kubo formula for the electrical conduc- 
tivity in classical plasmas has been investigated by Balescu (1961, 1963). He has 
derived a general formula for the time-dependent electric current which connects the 
time dependence of the current to the singularities of the resolvent of Liouville’s 
operator of a classical system. It has permitted direct contact with the general theory 
of approach to equilibrium developed by Prigogine and co-workers (e.g. Prigogine 
and R6sibois 1961, RCsibois 1964), and indicated the by now classical framework for 
a diagram expansion of transport coefficients. 

Our work is quite similar, and goes beyond the mean-field-like formalism of the 
Green-Kubo linear response theory. Therefore like Balescu, one can infer from his 
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proof and our work that electronic transport coefficients can always be calculated from 
a Markoffian Boltzmann-like equation even in the vicinity of a critical point where 
that equation does not describe properly the approach to the stationary state. This 
result can be regarded as a general justification of the traditional method of calculat- 
ing and expressing non-singular transport coefficients and interpreting their behaviour 
near a critical point in terms of the same quantities (‘physical parameters’) away from 
the critical region. 

Section 2 contains some tedious, but necessary rewriting of well known expres- 
sions of the Mori formalism, in order to recall the notation. The Mori identity can be 
found at various places in the literature (Kawasaki 1970, Zwanzig 1976, Grabert 
1977). Therefore we have attempted to be as concise as possible (8 2.1) and have left 
for appendix 1 the explicit derivation of Onsager kinetic coefficient matrix elements in 
terms of the correlation function between the time derivative of the electrical and 
thermal currents. Some physical aspect is however integrated into s12.2, where we 
indicate what is the ‘dominant’ correlation function for the various matrix elements of 
the Onsager tensor. In so doing we prepare the ‘Boltzmann connection’. In 8 3 we 
estimate such a ‘dominant’ term. 

Section 4 contains the equivalence demonstration. The transport coefficients are 
rewritten under a form which a priori introduces matrix elements having the dimen- 
sion of a time inverse. Such elements are identified with usual Boltzmann relaxation 
times for the electrical and thermal transport coefficients. The Seebeck coefficient 
describing the interplay between thermal force and electric effect has a hybrid form 
which is discussed. 

Away from the critical point (i.e. in the mean-field region) the connection between 
Mori and Boltzmann descriptions is easily illustrated in the metallic limit (kT<c EF). 

We conclude in 8 5 with some remarks on the universality of critical exponents as 
predicted for these kinetic coefficients. 

2. The Mori formalism 

2.1. Expressions for Onsager kinetic coefficients 

Since the Mori identity plays a major role in this work, it is appropriate to rewrite it in 
order to explain the notation. For a set of dynamical variables A (arranged in a 
column matrix), the generalised Langevin equation reads 

d 
-A(r)=iCl. A(t)-[’*(s). A( r - s )ds+F( t )  
dt  0 

where the first moment frequency matrix is a dyadic 

Cl = -i(A, A+) .  (A, A+)-1 (2) 
and A +  is the (row matrix) composed of elements Af, which is the Hermitian 
conjugate operator of Ai. The scalar product (F, G) is defined by 

B 

(F, G) = p-’ I dA (eAHF e-AHG) 
0 

where (. . .) denotes the average over a canonical distribution with the whole Hamil- 
tonian H, and p = l / k T .  
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The matrix O(s) represents the memory function which describes the dissipation. 
It is related to the random force F ( t )  by the fluctuation dissipation theorem (Kubo 
1966): 

*(t)= (F( t ) ,  F+(O)) .  (A,  A+)-’.  

F ( t )  = exp[t(l- P)~L](I - P)A 

PA = (A, A+)(A, A+)-’A 

(4 ) 

(5  1 
(6) 

In order that equation (1) be an identity, the random force has to be defined by 

where P is obviously a projection operator acting upon a quantum operator A such 
that (A) = 0. Zwanzig (1976) has clearly described the reason for such a definition, 
which is simply stated here. 

Let us assume that there is a particular wavevector q for the problem, and 
decompose all quantities into their q-component. In such a case, Mori (1965) has 
shown that the Onsager kinetic coefficients Lij relating linearly the dynamic variables 

A = (A;, A:, A f ,  A;, . .)= (Ai) 

to the generalised thermodynamic forces X = (Xi) by 

Ai = LiJj, i, j = 1 , 2  (7) 

are given by 

Lc” = lim lim p dt e-”(A!-,(t), ALi,(O)) 
s - t o q - t o  0 

where A* is the complex conjugate of A. 

current (JQ), which have quantum mechanical expressions 
In our case, A 1  and A2 are respectively the electric current (-e&) and the thermal 

Whence 
conductivity 

the transport coefficients (the electrical conductivity U, the thermal 
K ,  the Seebeck coefficient S) are respectively given by 

U = L11, (11a) 

These expressions define the transport coefficients in terms of correlation functions of 
the electrical and thermal current operators between fluctuating states. 

In the theory of irreversible processes, it is more appropriate to rewrite the 
transport coefficients in terms of the correlation functions of the time derivative of the 
two currents. In so doing, one takes into account the occurrence of different critical 
slowing down times (and lengths) for the various dissipative modes (currents). 

One can easily show (see appendix 1) that the Onsager coefficients’ matrix ele- 
ments Lij which appear in the right-hand side of (11) are given by 

(12) p(L-’)”’ = {(Aq, A:)-*[cp, - ifl,]}”” 
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where 
r m  

1625 

(13) 

contains the 'memory' of the fluctuating currents. 

2.2. Expressions for the transpori coeficients 

It may be proved on the one hand that n6  diffusion collective mode arises near T,. 
Indeed, I2 is odd under time reversal in the absence of an applied magnetic field. 
Furthermore, since the critical behaviour only arises in the temperature derivative of 
the transport coefficients, it is sufficient to consider that the scattering mechanism of 
electrons by the order parameter fluctuations is a 'small' perturbation. The Hamil- 
tonian H can be written as H = H o + H I ,  where Ho contains the driving mechanism 
for the critical behaviour. In modern language, H1 could contribute to renormalised 
singularities or crossover phenomena of static properties. 

For the non-critical transport properties, a given choice of H I  will lead to specific 
critical exponents for the temperature derivative of the transport coefficients. 
Although we do not need an explicit form of H1, one can imagine that it is Kasuya's 
H,, interaction Hamiltonian (Kasuya 1956). In such a case, it has been discussed 
elsewhere that one can linearise the above expressions for the electrical resistivity, and 
calculate its value in a first-order Born approximation in H1 (Binder and Stauffer 
1976, Ausloos 1976). 

The linearisation is primarily important to simplify F ( t )  after the expansion of the 
exponential factor in equation ( 5 ) .  Furthermore the non-linear contribution of PA is 
neglected with respect to the A term. This is based on the (reasonable) assumption 
that PA varies much more slowly than A, and can thus be considered as a constant on 
the time scale relative to the electronic mean free path. Notice also that (PA)=O 
under time reversal?. 

Following such a linearisation procedure, it is a matter of trivial algebra to express 
(p4 in equation (12) in a form involving the time-dependent non-equilibrium cor- 
relation function between the time derivative A of the currents, namely 

PL-' = (A, A+)-' Re d t ( A ( t ) ,  A'(0)). (A, A+)-'. (14) 6 
The explicit inverse of L-' is 

where F = Lt2  - LZIL;:L12 assuming that L;: exists. 
It is relatively cumbersome to carry through the following work if one expresses 

in terms of a product of three matrices as in (14), each containing 36 elements. 
Notice that two matrices involve static correlation functions only, i.e. (A, A+)-', It 

is here assumed that such a quantity is a diagonal matrix, and the following notations 
are introduced 

Agv = (AY, A:") (16) 
t The definition of A is as usual A = &A, where L.1 is the perturbed Liouville operator, i.e. iLIA = 
(i/hXHi, Al. 
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a;’’ = Re f d t ( A Y ( r ) ,  Ar’(0)). 

Because the second term of the element (L-l)ll can be neglected (appendix 2), the 
final useful expressions for the transport coefficients become 

P = P-1Z-1(A22allA~2-A21a12A~2 -A2~a21A 12+A12a22A21)2-~ 

K - ’  = T~-1Z-1(A21allA12-A11a12A21 -A12a21All +Alla22A11)Z-’ 

(19a) 

(19b) 

-&, - l=  P-’Z-’(A 22a12A 11 - A  1 2 ~ 2 2 - 4  11 - A ~ a l l A  12 + A  12a21A 12)Z-l. (19c) 

The terms underlined are shown in the next section to involve the dominant 
contribution, hence the most relevant correlation function. 

3. Leading contribution 

Although equations (19) are the most important expressions, they do not immediately 
appear to be similar to the more familiar expressions derived from the relaxation time 
approximation of the Boltzmann equation, like 

p = (m/ne2)7 i1  (200 1 
or 

K = (n7r2/3mB2T)~;,’. 

In 0 4, it will be shown how the set of relaxation times entering expressions like (20)  
can be interpreted in terms of the ( A ( t ) , A + ( O ) ) .  However, let us calculate first the 
Aij’s in a free-electron approximation (in such a case Aij is truly diagonal). One has 

In order to estimate the relative order of magnitude of the aij’s one considers that 
kT, is much smaller than EF, which implies that a ‘low-temperature’ expansion is 
reasonable. Define the kernel Kij ( t )  such that 
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can be used to write 

aij = JOm dt J d E f ( E ) S ( E  -H)Kij(t; E )  

K i j ( t ;  E ) =  5 dh Tr eAHAi(t) e-XHAJ(0)S(E-H). 

where 

The time integral can in practice be evaluated first. The remaining expression can 
then be considered as an energy derivative of some new kernel. After integration by 
parts, one obtains 

with 
E 

Gij(E)  = J d p  I dr Kij(r;  p ) .  

Such an expression has so general a form that it does not require the precise form 
of Gij(E).  It is valid beyond the Born approximation. In fact it has been implicitly 
used in a multiple scattering description of conduction processes in disordered systems 
(Levin et a1 1970). In our case, we can notice useful relationships between different 
Gij’s, 

1 
e G12(E) = - - ( E  - EF)G 1 I ( E )  (28a 1 

( 2 8 b )  
1 

e 
= T ( E  -EF)’GII(E).  

These expressions are immediate because the Fourier components of the heat 
current Ju and number current density JN are related by 

JU,q = EqJN,q. (29) 

There is clearly no need to impose a free-electron assumption on the Eq spectrum 
in order to recover ( 2 8 ) .  

The next step consists in taking the low-temperature expansion of each aij accord- 
ing to the standard expansion of the Fermi distribution function f ( E ) .  One obtains at 
once, e.g. 

a 11 = G 1 ~ ( J ? ? F )  + & T * P - ~  GI:‘ ( E F )  + O ( @ E F ) - ~ )  (30) 

and similarly €or a12 and aZ2, where the notation 

has been introduced. 
After evaluating such derivatives from (28), and substituting them into the 

definition (19) of the transport coefficients, one notices that due to the smallness of 
l / p E ~ ,  the terms underlined in (19) are the main contributors. 
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After this work was completed, we found that simple relations as ( 2 8 )  have also 
been envisaged by Mjolsness and Visscher (1972) in a quite different context (plasma 
physics). In particular, if one of the currents vanishes, as imposed by experimental 
conditions, such authors have observed that Onsager coefficients are related by simple 
relations. Such a work indicates that i f ,  for example, equation (29) holds the Wide- 
mann-Franz law follows easily. We have observed elsewhere a generalisation of such 
a statement to critical dynamics phenomena and indicated that it implies universal 
critical exponents. (Ausloos 1977). 

4. Relaxation time 'approximation' 

It is easily observed that when the memory function behaves like exp(-t/T) the 
relaxation time approximation (with constant T )  is recovered. However, the true 
nature of the relaxation time can only be found if it receives some interpretation and is 
not considered as a free parameter. We indicate here how the notion of relaxation 
time for electronic transport coefficients in equation ( 2 0 )  can still be used near a 
critical point in this formalism. 

A matrix r is defined by 

~ j j  = Ajlrlj ( 3 2 )  

in which each Aii is supposed to be diagonal as in 0 2. Furthermore they are 
proportional to the unit matrix if they are evaluated in a free-electron approximation 
as here. Thus equation (19) can be rewritten 

p = P-1Z-2A 11A : 2 ( r 1 1 -  A~lI'12A;;)(l- X )  ( 3 3 a )  
K - ~  = TP-'Z-2A22A:1 ( r 2 2  - A  12r21A r:)( 1 - X )  ( 3 3 b )  

-SK-' = P-1Z-2A 11A22A 12(A 11r12ALi - r l l ) ( l  - X )  ( 3 3 c )  

X =Ai2A21/AiiA22 ( 3 4 )  

where 

which is a small quantity according to relations obtained in (21). Since Z =  
A11A22(1 -X)-AllA22, one has 

It is evident that rl and r22 both have the dimension of (time)-'. By comparison 
with the simple minded formulae like (19) one can thus identify 

where T - ~  is a matrix having for elements the inverse relaxation time of the transport 
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coefficients. It is useful to notice that 

A 21 r 12 << A 2 2 r  1 1 

A12r21<< A 1 1 L 2  

by comparing (19) and (35). Such a case corresponds to the usual definition of the 
relaxation time orginating from, e.g., the (electrical current-electrical current) cor- 
relation function in the Kubo formula, i.e. 

and similarly for the thermal conductivity. Hence, the Boltzmann relaxation time 
finds some expected definition. 

The Seebeck coefficient requires some further writing. One obtains after substi- 
tuting (32) into (19c) 

ST = (A 11Ti2-A 12rii)(A 1 J 2 1  - A  11r22)-'  

Such a lengthy definition reflects the hybrid nature of the property, and the 
impossibility of defining a relaxation time to which S (or S - ' )  would be proportional. 
Notice that ratios of inverse relaxation times appear. This, in some sense, draws more 
attention to the 'static' nature of S,  i.e. the electronic entropy (Kelvin has indeed 
referred to S as the specific heat of electricity). However, another well known formula 
for S is that given by Mott (1936) where the electronic diffusion process is more 
apparent 

(40) 
r k 2 T  a In u ( E )  

s = - [  3e aE I,, 
where p ( E )  is the electrical conductivity of the material evaluated at the energy level 
E. 

The complicated nature of (39) also indicates why the behaviour of such a 
coefficient in the vicinity of a critical point has been interpreted along two different 
lines, one called the 'transport entropy' model (Tang et a1 1971), the other reflecting 
better the kinetic nature of S (Thomas et a1 1972, ZoriE er a1 1973). Such different 
interpretations of S can be reconciled as follows. It is possible to write S as a sum of 
two contributions. Let us first notice that according to the above inequalities (37) and 
relations (30)-(31), one has 

A11a22--A22a11= G11(EF) (41) 
and 

From (19), one has 
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with 

P K - ~  Î Ta22/A& 

which is correct up to (kT/EF)2. Whence some trivial algebra leads to 

(44) 

- X 2 k Z T  [l---lnGll(E)] EF d 
e& 3 d E  EF 

(45) 

The first term is nothing other than the electronic specific heat contribution (Tang 
etul 1971), while the second term arises from the electronic scattering process, and is 
a generalisation of the Mott formula (40). The latter is exactly recovered if  one 
approximates p as given in (19) by 

We must conclude this section by emphasising the usefulness of relations like (28) 
and the necessity of being able to express integrals in urj’s as energy integrals (27) 
before any further calculation. 

5. Conclusion 

Starting from the appropriate generalised Langevin equation of motion, electronic 
transport coefficients have received a general form near second-order phase tran- 
sitions. They have been expressed in terms of correlation functions between the time 
derivative of the electrical and the thermal currents. These expressions are somewhat 
awkward and do not appear to resemble those written in the Boltzmann relaxation 
time approximation. 

It has been possible on the one hand to simplify the formulae in the low-tempera- 
ture degenerate electron gas limit. On the other hand, by introducing a priori a matrix 
of relaxation time, it has been possible to identify the Boltzmann relaxation time in 
terms of the previous correlation functions. The interpretation of such relaxation 
times is rather simple for the electrical resistivity and the thermal conductivity. In the 
former case, the relaxation time arises from electrical current-electrical current (time 
derivative) correlation function-while it arises from the corresponding correlation 
function for the thermal current in the latter case. 

For the Seebeck coefficient however, one cannot define one relaxation time. It has 
been possible to show that a ‘ratio of relaxation times’ enters the definition. There- 
fore, the ‘transport entropy model’ based on a simple relation between static quan- 
tities (entropy and specific heat) can be now understood. However, if  one pursues the 
analysis further, one can observe that the scattering contribution can also be presented 
as done by Mott. Both contributions are thus not equivalent but are complementary. 
Both terms must certainly be examined in the vicinity of a critical point. 

Finally let us notice that the kernels Gi,(E) are functionals of the appropriate 
susceptibility. Therefore when taking the temperature derivative of the transport 
coefficients, it can be easily predicted that a universal critical exponent has to be 
found, irrespective of an elastic scattering condition. 
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Appendix 1 

It is usual to assume that Fq(f) is very rapidly fluctuating with time. Because of the 
scalar product in (4), @(t )  tends rapidly to zero. Therefore one can consider that a fast 
loss of memory occurs such that one can successively write 

One can take the non-equilibrium average of the generalised Langevin equation 
written for the q component of the dynamic variable (currents Ai). The average of 
Fq(r) vanishes. Furthermore, the average of the dynamic variable can be regarded as 
classical number. The Mori identity is thus easily rewritten and integrated to give 

A,(t) = Aq(0) exp(in, - q q ) t .  (A21 

It is sufficient to take the scalar product of (A2) with respect to A:(O), and 
integrate once again the resulting correlation function over t in order to obtain 

IoW (U,  A;@) dt = (40, - iflq)-l(Aq, '4 2 ('43) 

which readily shows that the right-hand side is nothing other than Mori form of the 
Onsager kinetic coefficients as defined in (8). In  so doing one has obtained a concise 
expression for the electronic transport coefficients near a critical point. 

Appendix 2 

It is shown that the second term of the coefficient (L- ' ) l l  in (15) can be neglected in 
the case of metallic conduction. 

Indeed if L;: is not singular (as expected), F-1L21Li: is identical to (L11L;:L22- 
LI2)- l  hence F = TK. Therefore 

L ; : L ~ ~ F - '  = s K - ' .  (A4) 

The second term of (L-')ll is thus of the order of S K - ~ L ~ ~ L ; :  or S2T.  
The Ioffe number (Wisniewski et a1 1976) is defined for an isotropic system, but it 

can be considered as a tensor of elements T ( ~ S * K - ' ) , , .  If the elements of S 2  are thus 
smaller than a quantity about equal to the Lorenz number, the second term of (L-l)ll 
can thus be neglected. Such is the case in metals. 
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